• 2019-07
  • 2019-08
  • 2019-09
  • 2019-10
  • 2019-11
  • 2020-03
  • 2020-07
  • 2020-08
  • 2021-03
  • br Rosenthal SJ Chang JC Kovtun


    [6] Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID. Biocompatible quantum dots for biological applications. Chem Biol 2011;18:10–24.
    [7] Bohara RA, Thorat ND, Pawar SH. Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv 2016;6:43989–4012.
    [8] Ge Y, Zhang Y, He S, Nie F, Teng G, Gu N. Fluorescence modified chitosan– coated magnetic nanoparticles for high-e cient cellular imaging. Nanoscale Res Lett 2009;4:287–95.
    [9] Mahmoudi M, Shokrgoza MA. Multifunctional stable fluorescent magnetic nanoparticles. Chem Commun 2012;48:3957–9.
    [10] Fu A, Wilson RJ, Smith BR, Mullenix J, Earhart C, Akin D, Guccinoe S, Wang SX, Gambhir SS. Fluorescent magnetic nanoparticles for magnetically enhanced cancer imaging and targeting in living subjects. ACS Nano 2012;6:6862–9.
    [11] Ebrahiminezhad A, Ghasemi Y, Rasoul-AminibJaleh S, Barar J, Davaran S. Prepa-ration of novel magnetic fluorescent nanoparticles using amino acids. Colloids Surf B 2013;102:534–9.
    [12] Jahangirian H, Lemraski EG, Webster TJ, Moghaddam RR, Abdollahi Y. A review of drug delivery systmes based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomed 2017;12:2957–78.
    [15] Orlova A, Tolmachev V, Pehrson R, Lindborg M, Tran T, Sandström M, Nils-son FY, Wennborg A, Abrahmsén L, Feldwisch J. Synthetic a body molecules: a novel class of a nity ligands for molecular imaging of HER2-expressing ma-lignant tumors. Cancer Res 2007;67:2178–86.
    [16] Tsao KL, Debarbieri B, Michel H, Waugh DS. A versatile plasmid 9(S)-HODE vector for the production of biotinylated proteins by site-specific, enzymatic modification in Escherichia coli. Gene 1996;169:59–64.
    [17] Chiang CJ, Lin LJ, Wang ZW, Lee TT, Chao YP. Design of a noncovalently linked bifunctional enzyme for whole-cell biotransformation. Proc Biochem 2014;49:1122–8.
    [18] Hashimoto-Gotoh T, Yamaguchi M, Yasojima K, Tsujimura A, Wakabayashi Y, Watanabe Y. A set of temperature sensitive-replication/-segregation and tem-perature resistant plasmid vectors with different copy numbers and in an iso-genic background (chloramphenicol, kanamycin, lacZ, repA, par, polA). Gene 2000;241:185–91.
    [19] Schatz PJ. Use of peptide libraries to map the substrate specificity of a pep-tide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Biotechnology 1993;11:1138–43.
    [21] LaVallie RE, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM. A thiore-doxin gene fusion expression system that circumvents inclusion body forma-tion in the E. coli cytoplasm. Biotechnology 1993;11:187–93.
    [23] Rozenzhak SM, Kadakia MP, Caserta TM, Westbrook TR, Stone MO, Naik RR. Cellular internalization and targeting of semiconductor quantum dots. Chem Comm 2005;17:2217–19.
    [24] Pinaud F, King D, Moore H-P, Weiss S. Bioactivation and cell targeting of semi-conductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 2004;126:6115–23.
    [25] Lesch HP, Kaikkonen MU, Pikkarainen JT, Herttuala SY. Avidin-biotin technol-ogy in targeted therapy. Expert Opin Drug Deliv 2010;7:1–14.
    [26] Hermanson GT, editor. Bioconjugate techniques. San Diego, CA, USA: Academic Press; 2008.
    [27] Lei Y, Tang H, Yao L, Yu R, Feng M, Zou B. Applications 9(S)-HODE of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body. Biocojugate Chem 2008;19:421–7.
    [29] Wen CY, Xie HY, Zhang ZL, Wu LL, Hu J, Tang M, Wu M, Pang DW. Fluores-cent/magnetic micro/nano-spheres based on quantum dots and/or magnetic nanoparticles: preparation, properties, and their applications in cancer stud-ies. Nanoscale 2016;8:12406–29.